Nonresonant chemical mechanism in surface-enhanced Raman scattering of pyridine on M@Au12 clusters.

نویسندگان

  • Lei Chen
  • Yang Gao
  • Yingkun Cheng
  • Haichao Li
  • Zhigang Wang
  • Zhengqiang Li
  • Rui-Qin Zhang
چکیده

By employing density functional theory (DFT), this study presents a detailed analysis of nonresonant surface-enhanced Raman scattering (SERS) of pyridine on M@Au12 (M = V(-), Nb(-), Ta(-), Cr, Mo, W, Mn(+), Tc(+), and Re(+))-the stable 13-atom neutral and charged gold buckyball clusters. Changing the core atom in M@Au12 enabled us to modulate the direct chemical interactions between pyridine and the metal cluster. The results of our calculations indicate that the ground-state chemical enhancement does not increase as the binding interaction strengthens or the transfer charge increases between pyridine and the cluster. Instead, the magnitude of the chemical enhancement is governed, to a large extent, by the charged properties of the metal clusters. Pyridine on M@Au12 anion clusters exhibits strong chemical enhancement of a factor of about 10(2), but the equivalent increase for pyridine adsorbed on M@Au12 neutral and cation clusters is no more than 10. Polarizability and deformation density analyses clearly show that compared with the neutral and cation clusters, the anion clusters have more delocalized electrons and occupy higher energy levels in the pyridine-metal complex. Accordingly, they produce larger polarizability, leading to a stronger nonresonant enhancement effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonresonant hyper-Raman and hyper-Rayleigh scattering in benzene and pyridine

Nonresonant hyper-Raman and hyper-Rayleigh spectra excited at 1064 nm are reported for neat benzene and pyridine. The theory of Herzberg-Teller vibronic coupling in nonresonant and preresonant hyper-Raman scattering is developed. Nonresonant hyper-Raman scattering is shown to be vibronically induced by modes that efficiently couple strongly allowed onephoton and two-photon transitions. A weak a...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

FT- SERS Study of Adriamycin - DNA Intraction

FT-SERS (Fourier Transform Surface Enhanced Raman Scattering) of adriamycin and its complex with DNA is reported. It is shown that in agreement with previous Raman studies the interaction of adriamycin  with DNA takes place through an intercalation mechanism. The presence of a new band at 731 cm-1 suggests that ring D of adriamycin is not involved in the intercalation process.

متن کامل

On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters.

We study the effects of chemical bonding on Raman scattering from benzenethiol chemisorbed on silver clusters using time-dependent density functional theory (TDDFT). Raman scattering cross sections are computed using a formalism that employs analytical derivatives of frequency-dependent electronic polarizabilities, which treats both off-resonant and resonant enhancement within the same scheme. ...

متن کامل

Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity.

Platinum nanothorn assemblies with sharp tips and edges were prepared, which exhibit high surface enhanced Raman scattering (SERS) activity and yield an enhancement factor as high as 2000 for adsorbed pyridine.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2016